

Innovative impact surface treatment solutions

Automotive & Industrial applications

1991

Europe Technologies Group Headquarters in Nantes (FR)

Sister Company in USA EMPOWERING TECHNOLOGIES Inc. (ETI)

Innovative in Mechanical impact surface treatments

SONATS Quality
ISO 9001 & EN 9100

Sister Company in China EMPOWERING TECHNOLOGIES CHINA

Organization and Key Figures

With more than 25 years of experience, Europe Technologies group offers you its expertise for:

- Industrialization and manufacturing of composites and metallic parts
- Design and manufacturing of robot cells and machines integrating our processes (metal surface treatment, composite welding, cutting, sanding...)
- International MRO services (aircrafts, vessels, ...)

Key Figures 2017

400 (employees)

70 M€ (Turnover)

subsidiaries (20000 m² of buildings)

35% (Export)

15% (R&D investments)

Our technologies

USP

Forming & Straightening

UNS

High frequency mechanical impact HFMI/UIT

Stress lab characterization expertise

X-ray diffraction, Incremental Hole-Drilling

Process & Applications Studies

Feasibility, Materials, STRESSONIC® Parameters

Design and Manufacturing

Specific Tooling and Standard or Customized Machines

Sub-contracting

Shot Peening in our Workshop in Nantes, France

On-site Treatment Operations

In France, Europe and Worldwide (shot peening, impact treatment, flapper peening)

Specific Training

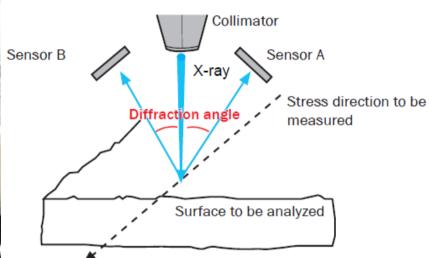
Shot Peening and Flapper Peening

FAA-accredited Training material and Trainers

Distribution

Shot Peening control accessories and consumables

Electronics Inc. (Almen, Magnavalves....) Shockform Aero. (FlapSpeedTM, InspectViewTM)

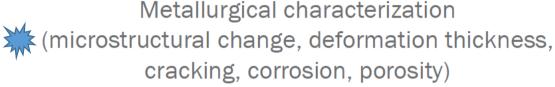

Material & Shot Peening measurement

XRD

X-ray Diffraction
NF FN 15305 and ASTM E2860

Material & Shot Peening measurement

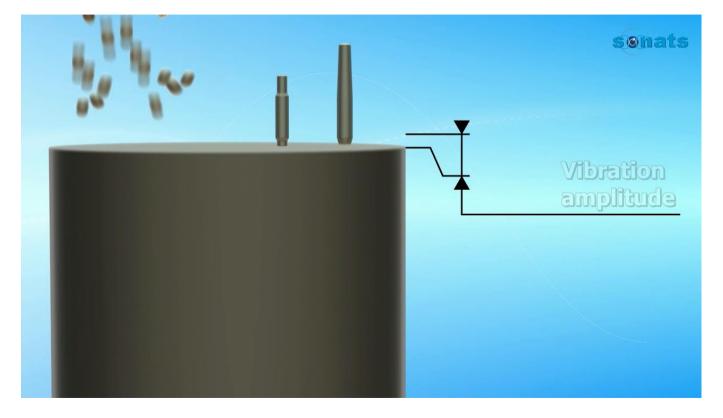
Hole-Drilling Strain-Gage


Hole-Drilling Strain-Gage method ASTM E837 and Sonats advanced analysis

Material & Shot Peening measurement

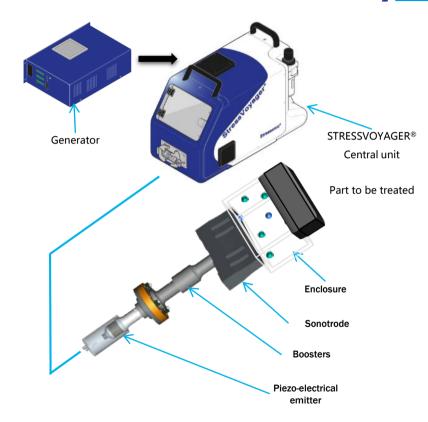
Metallography and Roughness

Roughness and topography measurement (EN ISO 4288)



Hardness by Vickers (EN ISO 6507) and Knoop (EN ISO 4545) testing

STRESSONIC® Technology



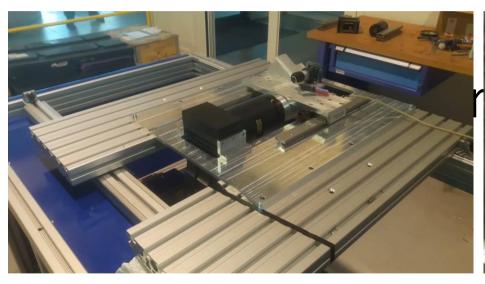
STRESSONIC® Process

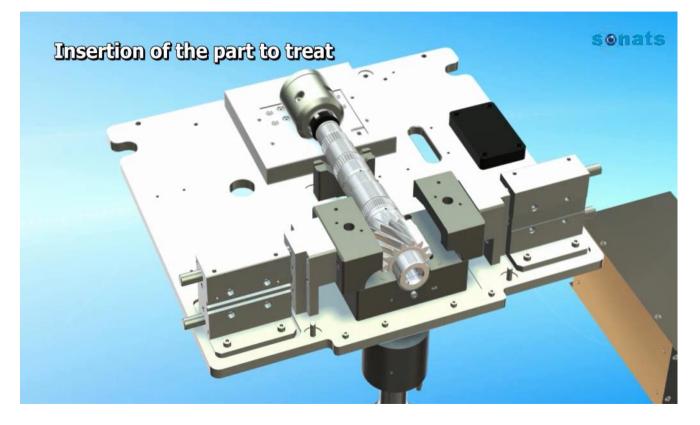
ss /

Principle

- 1 The **generator** digitally generates an electrical sine wave at a high frequency of 20 kHz (ultrasonic frequency).
- Piezo-electrical emitter converts this signal into a mechanical vibration which is then amplified by a series of boosters and the ultrasonic sonotrode.
- Media are gaining their kinetic energy from the sonotrode vibration, and are thrown to the part to be treated inside a hermetic chamber.
- 4 Random displacement of the media inside the volume of the chamber and the treated part ensures a uniform peening of the part.

Ultrasonically activated Shot Peening (USP)


Even for **Complex geometries**



Dynamic blade treatment on test bench

AMS 2580 & 2585 « Ultrasonically Activated Shot peening »

BNAE - NF L 06-833 « Aerospace series -Ultrasonic shot peening for inducement of compressive surface stresses for metallic parts »

AIPI 02-02-004 (Process Instruction) « Shot Peening for Fatigue Life enhancement of metal parts » AIPS 02-02-004 (Process Specification) « Shot Peening for Fatigue Life enhancement of metal parts »

DMP28 L « Mise en contrainte de compression superficielle »

Aerospace, Space, Military:

Airbus, Airbus Helicopter, Bamtri, Boeing, CAC, Dassault, Latécoère, Nexter, Safran Landing Systems, Safran Helicopter Engines, Safran Aircraft Engines, MHI Aero, MTU Aeroengines, Saljut, SKF Aeroengines, Ratier-Figeac, Pratt&Whitney, Rolls-Royce, US Army, XAC

Automotive:

Daimler, Erkert, Bosch, Toyota, PSA, Renault Sport Racing, L'Orange, SKF, Valeo, Continental

Power Generation and Heavy Industries:

Alstom Power, GE Gas turbines, GE Energy, MTU Friedrichshafen, Hydro Quebec, MAN Diesel, KHEL, Wärtsila, Caterpillar, Toshiba Nuclear, MHI Nuclear, AREVA, Cummins, Hilti, ThyssenKrupp, Arcelor Mittal, Nexans, ABB Turbo Chargers

Ultrasonic Shot Peening Introduction

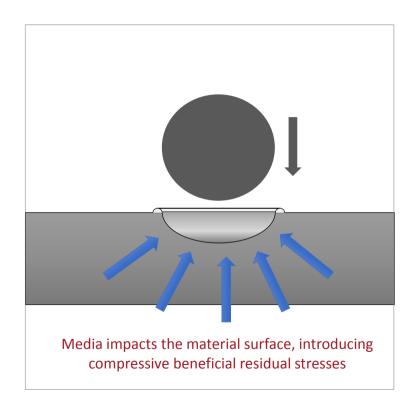
Shot Peening principle

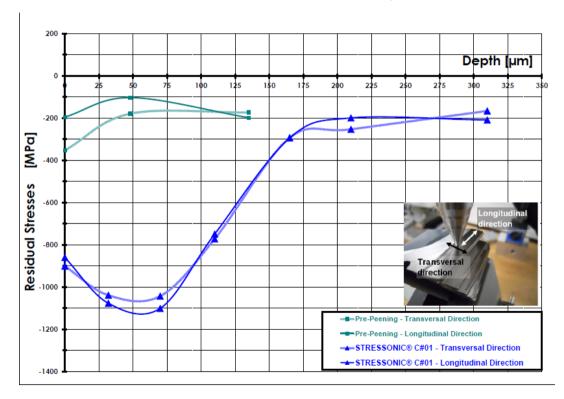
Cold working impact treatment technique, consisting in shocking a metallic part surface with spherical media, aiming at modifying its surface characteristics.

Process Targets

Residual Compressive Stresses Introduction:

- Texturing
- Roughness Modification
- Nano-crystallization
- Compaction...




Why using Shot Peening?

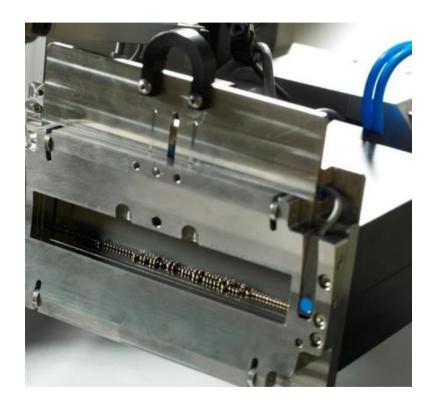
- 1 / Improves fatigue life and parts reliability
- 2 / Enhances stress corrosion cracking resistance
- 3 / Can be used on most seen metallic and ceramic materials: Steel, Aluminum, Titanium, Inconel, Stainless Steel, Zirconium, ...

Residual stress curve example on Gear

Residual stress curve example on Output Shaft

Parameters	Condition #04 100C6 Ø1.0 mm = 63 ± 3 HRC 14.0g			
Media :				
Ball set mass :				
Amplitude :	110µm p/v			
Peening filme :	90 sec			
Speed rotation :	é rotation/min			
Coverage:	>100% on roat tooth			

Verification of the treatment repetability (machine with different station or different version of output shaft)

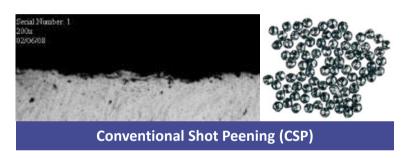

Ultrasonic Shot Peening Introduction

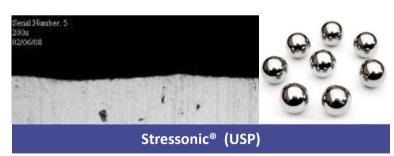
Ultrasonic shot peening goals

Introduction of beneficial compressive residual stresses in a **controlled**, **reliable** and **repeatable** way.

Main parameters

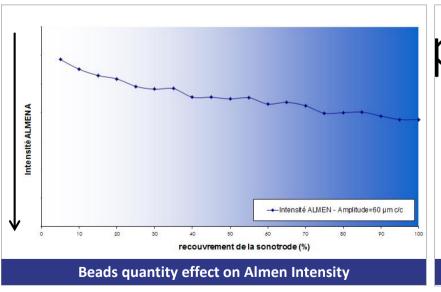
- Sonotrode Vibration Amplitude Controlled in real time
- Media (material, diameter, hardness, density)
- Media's quantity (counted or weighted)
- Chamber geometry Distance between Sonotrode and treated part

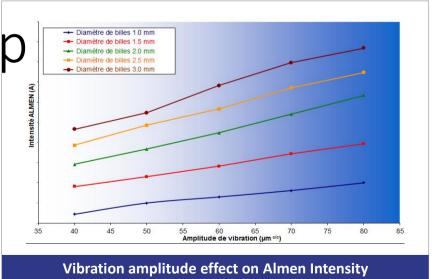




Media or Beads

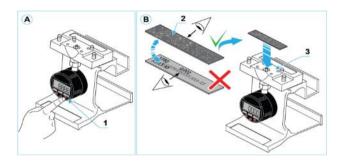
- Only few grams of beads are necessary
- · High quality beads (geometry ball bearing type, material)
 - = No erosion, only compression.
- Beads don't break on the surface enabling no contamination No need surface **decontamination** by chemical or mechanical methods, reduction of polishing need.

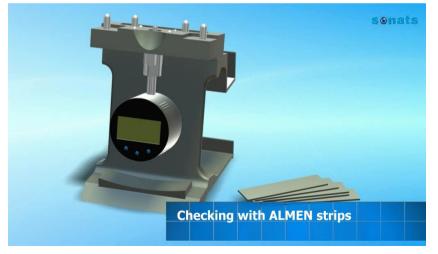

Example for Aluminium 2000, Intensity 17N mm



Whole range of almen intensity available

N-A-C Almen Intensities

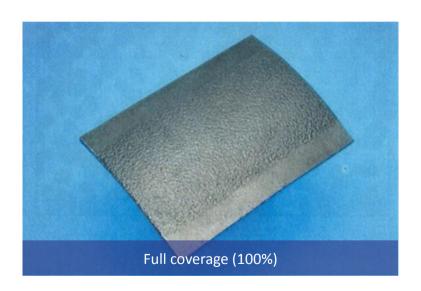


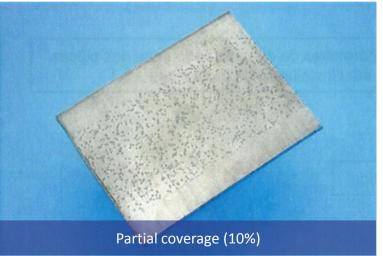

Intensity control on almen strips

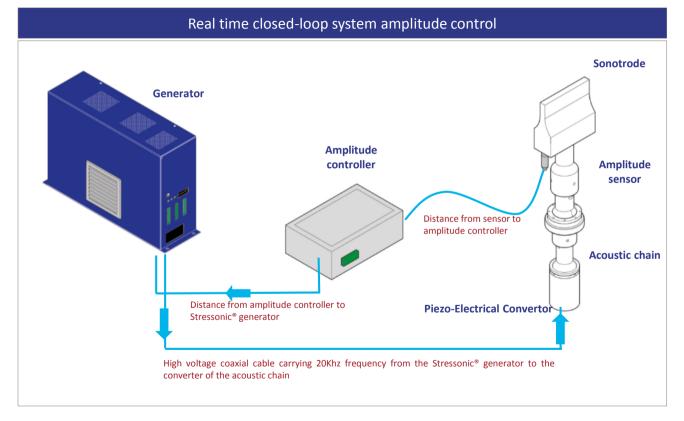
- Strips positioning on almen gage
- Same shot peening conditions than the part to be treated
- Observation of strips distorsion during treatment and measurement with Almen gage
- **Determining of a saturation curve** to calculate shot peening intensity based on a set of parameters

BNAE - NF L 06-833 "Aerospace series -Ultrasonic shot peening for inducement of compressive surface stresses for metallic parts » Mai 2009

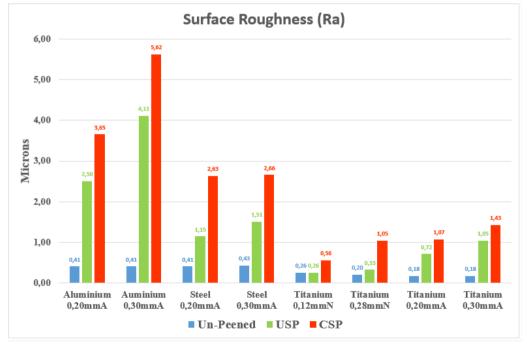
SAE/AMS - AMS 2580-2585 "Ultrasonically activated shot peening" Mai 2010




Treatment control and characterization


Coverage

Number of impacts measured on an area

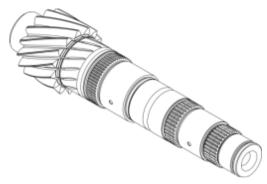


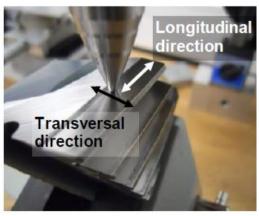
Lower ROUGHNESS after ultrasonic shot peening comparing to conventional methods

ROUGHNESS example on Output Shaft

After USP

Measure	Transversal direction			Longitudinal direction		
measure	Ra [µm]	Rt [µm]	Rz [µm]	Ra [µm]	Rt [µm]	Rz [µm]
#01	0,48	3,64	2,82	0,44	2,64	2,16
#02	0,49	4,13	3,04	0,33	2,27	1,75
#03	0,48	3,92	2,98	0,33	2,67	1,88
Average	0,48	3,90	2,95	0,37	2,53	1,93

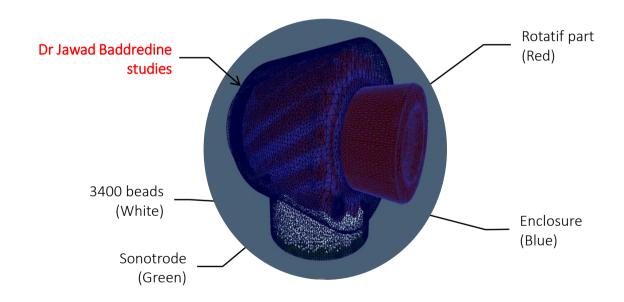

ROUGHNESS example on Ring Gear


Before USP

Pre - Peening						
Measure	Transval direction			Longitudinal direction		
Measure	Ra [µm]	Rt [µm]	Rz [µm]	Ra [µm]	Rt [µm]	Rz [µm]
#01	0,49	4,28	3,57	0,05	0,51	0,42
#02	0,50	4,60	3,55	0,09	0,69	0,59
#03	0,51	4,24	3,47	0,04	0,47	0,31
Average	0,50	4,37	3,53	0,06	0,56	0,44

After USP

	Post-Peening by STRESSONIC® - C#01						
Measure	Transval direction			Longitudinal direction			
measure	Ra [µm]	Rt [µm]	Rz [µm]	Ra [µm]	Rt [µm]	Rz [µm]	
#01	0,49	3,73	3,01	0,47	3,02	2,27	
#02	0,50	3,32	2,86	0,48	2,97	2,47	
#03	0,49	3,42	2,94	0,44	3,32	2,54	
Average	0,49	3,49	2,94	0,46	3,10	2,43	



Industrialization and technical development

Numerized simulation of crankshaft treatment

Process advantages

- Treatment precision, control & repeatability
- Treatment homogeneity
- High quality surface finish
- Tribological performance improvement higher surface quality reduces friction and wear between moving components

Reduction in fuel consumption and CO₂

emissions.

Industrial advantages

- Low media & Energy consumption
- Simple implementation (no need for masking, decontamination...) and portability of the StressVoyager/Nomad equipment
- Space saving in customer's workshop
- Clean, Low noise & Environment friendly
- Reduced ATEX/Dust Explosion risk

Safe & Green Lean Manufacturing solution

Ultrasonic Shot Peening

Dimentional limits

Peenable surface at t time is

limited by the sonotrode surface

Treatment time

In some treatment configurations, a lower energy given and a lower media quantity can generate a longer treatment time for a same intensity. Shorter global cycle still enables most of the time to reach a shorter operation time

Chamber design

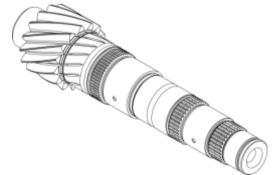
For each application, we design a specific chamber guarantying the treatment sealing (not loosing any beads) and the needed distance between the sonotrode and the part (reach the targeted intensity)

Context

The automotive supplier wanted to **integrate in its production line** (reduce space) an automated shot peening machine to increase the fatigue life cycle of output shaft parts.

Solution

Development with the client of an automated, high speed machine processed with ultrasonic shot peening to be integrated in the plant



Benefits

Conservation of Lean structure of the production chain, gain in treatment quality and homogeneity

Results

Treatment rate of 1000 parts per day without human intervention

USP 4-station machine for Ring Gears/Pinions/Shafts

Robotized loading, automated counting and distribution of beads, complete supervision, quality reports

Compressor Wheels / Impellers

Turbocharger Compressor Wheels

Alumine

Car

Truck

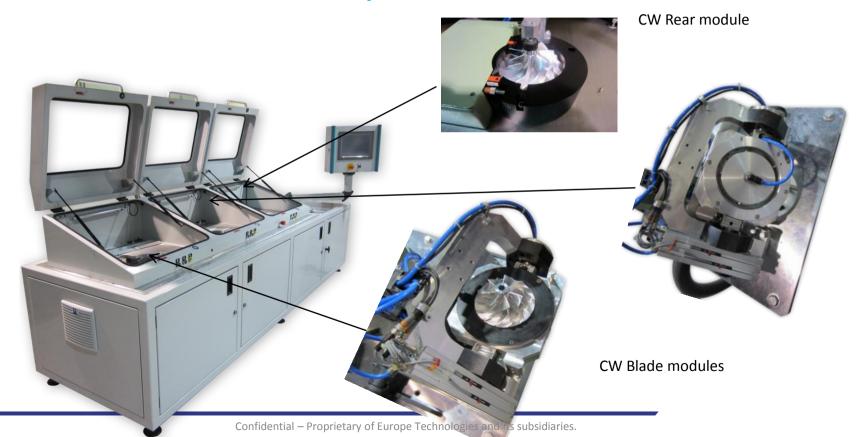
Helicopter engine impeller (Inconel)

Industrial Process – Automotive (2)

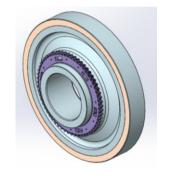
Automotive Turbowheel Production toolings

TW Blade face module

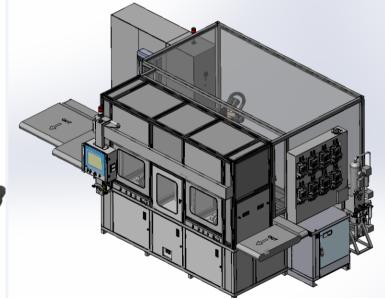
- Production toolings are equipped with automated movement sensors and controllers.
- Part could be manually handled or by robot



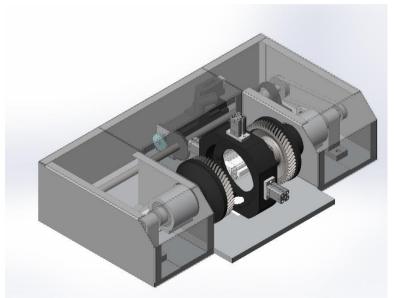
TW Rear face module

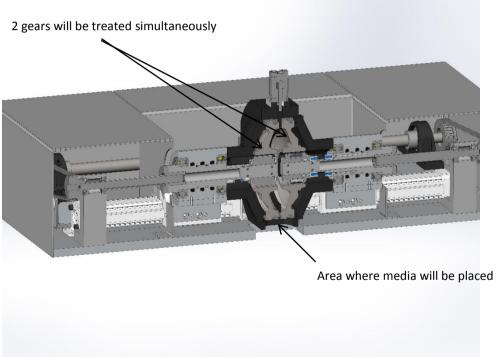

Industrial Process – Automotive (2)

USP 3-station machine for Compressor Wheels



USP 2-station machine for Ring Gears/ Pinions





Ultrasonic Shot Peening Industrial Process – Gear

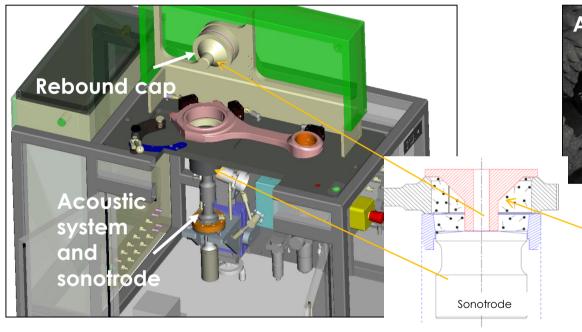
Shot Peening on Gear

INDUSTRIAL EXAMPLES

Aerospace Applications

Ultrasonic Shot Peening Machines and Robotized Cells for Blisks & Disks treatment

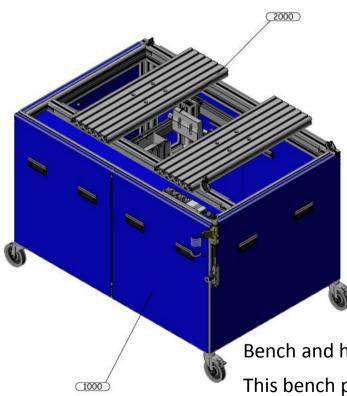
Ultrasonic Shot
Peening Machines
for Aircraft Engine
Impellers & Small
Blisks treatment

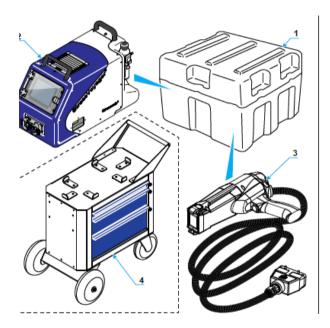


Ultrasonic Shot
Peening Machine
for Blade Roots
treatment

Fully robotized machine

Balls are moving from the vibrating sonotrode to the bore areas thanks to the rebound cap





Simplified Layout of Stressonic® machine for Crankshafts

Bench for trials or small serial production

Bench and his acoustic element with a StressVoyager USP.

This bench permit to make some trials (required specific toolings), or small serial production.

The ultrasonically activated shot peening is a method ...

Simple

and easy to implement, qualitative and perfectly controlled

Applicable

to a wide range of parts thanks to automotized and robotized industrial equipment Reknown

and used by the OEMs in aeronautical, automotive, energy and others sectors...

Safe & Green

Having a low impact on global environment: low footprint, low consumption, reduction of prior and post-operations.

Ultrasonic Needle straightening

Targets

Shaping the part according to the drawing

Distorsion origins

- Machining, welding, grinding...
- Thermical treatment

Straightening method

- Press, shrinkage, rolling,
- Local rolling, shot peening,
- Hammering or other impact methods.

Mechanical impact treatment aiming at:

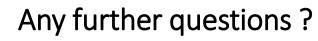
- Enhance welds mechanical perofrmance :
 - Increase fatigue life
 - Increase fatigue limit
 - Decrease weight of the welded assembly in design phase
 - Improve SCC resistance

Main targets

- Modifications of the weld toe geometry
- Beneficial Residual stresses introduction

Ultrasonic Needle peening

FAA Shot Peening Workshop



SHOT PEENING AND ROTARY FLAP PEENING

Nantes, France **November 2019**

Ask our experts:

sonats-sales@europetechnologies.com

+33 251 700 494

Web

www.sonats-et.fr

Or our Nordic representative

Margareta Geijron

Tel: +46 8 556 953 00 Mobile: +46 70 766 1753

margareta.geijron@exportreform.se